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ABSTRACT: A rigorous definition of the concept of pseudo-
symmetry, which is as important to chemistry as the concepts
of symmetry implemented through group theory, should allow
us to apply those group theoretical tools to molecules that are
significantly distorted from those ideal symmetries best known
and understood by the chemical community. In this paper, we
consider four-coordinate transition-metal complexes with
geometries along the interconversion path between the square
and the tetrahedron and show how their molecular orbitals can
be expressed in terms of either the tetrahedral or tetragonal symmetry groups. Furthermore, we analyze how the intensity of a
d−d absorption band can be related to the degree of symmetry loss of the d-block molecular orbitals by means of their
decomposition in terms of contributions from different pseudo-symmetry representations. As a final example, we also show how
the substitution of a single ligand in a square planar complex affects the symmetry of the molecular orbitals and the absorption
intensity associated to an electronic transition.

■ INTRODUCTION

The concept of pseudo-symmetry is embedded in the language
of molecular chemistry, even if it is rarely defined. Thus, it is
common to consider molecules as if they had a higher
symmetry than they actually have, and to talk about octahedral
complexes, even in cases in which the symmetry around a
central metal atom is far from corresponding to the octahedral
Oh point group. In general, we can distinguish between such an
ideal symmetry group, G, that we should call a pseudo-symmetry
group, and the actual symmetry group, F, of the molecule under
study. For instance, to refer to the d-block molecular orbitals of
four-coordinate metal complexes, we often use the e and t2
symmetry labels valid for the tetrahedral group, even when the
molecule under study may be distorted, and we qualify it
appropriately as pseudo-tetrahedral.
The use of pseudo-symmetry is useful to keep a consistent

conceptual framework and a common language when dealing
with several molecules that may belong to different symmetry
groups (F1, F2, ..., Fn) derived from the same pseudo-symmetry
group G (for instance, through different molecular distortions;
see Scheme 1). Conversely, one may wish to relate the real
symmetry F of a molecule to different ideal symmetries (G1,
G2, ..., Gn), e.g., looking for patterns of tetrahedral and
tetragonal symmetries in four-coordinate metal atoms (see
Scheme 2).
However, as powerful as the group theoretical tools are, we

have to choose between applying the ideal symmetry in a non
rigorous way or to strictly use the real symmetry losing the
information associated with the ideal symmetry group, except
for the qualitative correlation between irreducible representa-

tions of the two groups. Yet, in many applications, it would be
highly desirable to be able to apply the group theoretical tools
considering the ideal symmetry for a wider perspective, while at
the same time using the real one for each particular case. In this
work, we apply recent methodological developments in the
framework of the continuous symmetry measures (CSMs)1,2

that allow us to rigorously explore and quantify the symmetry
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of the molecular electronic structure using a pseudo-symmetry
point group, and to classify molecular orbitals in terms of its
irreducible representations.3,4 The general problem to which we
wish to apply, in a quantitative way, the concepts of pseudo-
symmetry is the classification of the molecular orbitals of a
molecule belonging to a symmetry group F, according to the
irreducible representations of another group G.
In the present work, we show how the use of pseudo-

symmetry irreducible representations can be applied to facilitate
the analysis of the molecular orbitals (MOs) of four-coordinate
complexes. The aspects to be considered are (a) the change in
the inversion symmetry properties of the d-block MOs in the
frequently found geometries along the D2d spread interconver-
sion pathway (Scheme 3) between the square and the

tetrahedron,5,6 (b) the use of pseudo-symmetry representations
to analyze orbital mixing upon distortion along the same
pathway, (c) the corresponding pseudo-symmetry analysis of
variations in an electronic transition probability upon loss of
inversion symmetry along the same path, and (d) the effect of
chemical substitution in a square planar complex on the
symmetry of its d-block MOs.
Although the methodology employed here can be applied to

molecules of any size, insofar as their MOs can be calculated,
we have considered only some of the simplest possible
coordination complexes to facilitate a detailed discussion of
the details, even at the price of choosing some models that do
not have an experimental counterpart. Thus, for the analysis of
the inversion properties of d-block MOs, we have chosen the
high-spin [MnF4]

2− anion, in which the monatomic ligands
avoid symmetry loses due to the presence of substituents, while
the high-spin d5 configuration of the central ion guarantees the
same occupation for all the d-orbitals. For the analysis of the
orbital mixing on distorting along the spread pathway and the
corresponding pseudo-symmetry study of an electronic
transition probability, we have chosen the [NiF4]

2− anion for
which a z-polarized transition may be ascribed to a single
electron excitation from the z2 to the x2 − y2 orbital in a
hypothetical approximately planar geometry. Finally, to analyze
the loss of symmetry of the d-block molecular orbitals of a
square planar complex effected by ligand substitution, we have
chosen the series of complexes [NiIIL(PH3)3]

n+, where L =
PH3, F

−, Cl−, Br−, CN−, Me−, and NH3.
Despite the simplicity of the molecules to be studied here

and the relatively high symmetry of the extreme and
intermediate structures along the path, the symmetry and
composition of the MOs are relatively complicated, as can be
seen by analyzing the irreducible symmetry representations of
the metal atomic orbitals, with respect to the three point groups
that appear along the path, together with those of the
symmetry-adapted group orbitals of the ligands (both σ and
π), given in Table 1, where the parallel and perpendicular
symbols refer to the plane along which the particular ligand is
displaced (see Scheme 4 for notation). One can see there that

the metal d orbitals can be hybridized in some cases by mixing
with metal s or p orbitals of the same symmetry species while
they can also interact with ligand orbitals of σ or π type, or
both. Let us consider, for example, the z2 orbital with the help
of Table 1. At the square planar geometry (A1g representation),
it hybridizes with the s AO and interacts only with ligand σ
orbitals (see Figure 1, left). At intermediate geometries along
the D2d spread path (A1 representation), it can mix with both σ
and π// ligand orbitals (Figure 1, center), whereas at the end of
the path, in the tetrahedral geometry (E representation), it can
only mix with ligand π orbitals (see Figure 1, right). The types
of mixing that z2 and other d orbitals can present for each
symmetry along the path are summarized in Table 2.
The symmetry-controlled changes in the hybridization and in

the type of antibonding interaction with ligand orbitals along
the path are nicely reflected in the Walsh diagram presented in
Figure 2. There, and throughout this paper, we define the
geometry of a molecule along the square planar-tetrahedral

Scheme 3

Table 1. Irreducible Representations of the Metal Atomic
Orbitals and of the σ and π-Type Ligand Group Orbitals in a
Four-Coordinate Complex along the Spread Pathway from
the Square to the Tetrahedron (D4h, D2d, and Td Point
Groups), and upon Substitution of One Ligand in a Square
Planar Environment (C2v Point Group)

orbital D4h D2d Td C2v

Metal
z2 A1g A1 E A1

xy B2g B1 E B1

xz, yz Eg E T2 A2 + B2

x2 − y2 B1g B2 T2 A1

s A1g A1 A1 A1

pz A2u B2 T2 B2

px, py Eu E T2 A1 + B1

Ligand σ
σ1 + σ2 + σ3 + σ4 A1g A1 A1 A1

σ1 − σ3 Eu E T2 A1

σ2 − σ4 Eu E T2 B1

σ1 − σ2 + σ3 − σ4 B1g B2 T2 A1

Ligand πa

π1// − π2// + π3// − π4// B2u A1 E B2

π1⊥ − π2⊥ + π3⊥ − π4⊥ B2g B1 E B1

π1⊥ + π2⊥ + π3⊥ + π4⊥ A2g A2 T1 B1

π1⊥ − π3⊥, π2⊥ − π4⊥ Eu E T1 A1 + B1

π1// + π2// + π3// + π4// A2u B2 T2 B2

π1// + π3//, π2// + π4// Eg E T2 A2 + B2

aNote: The classification of the π orbitals in two subsets (⊥ and //) is
not strict for the Td and D2d symmetries, since each of these subsets by
itself is not invariant under the operations of those groups.

Scheme 4
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pathway by means of the generalized coordinate7 along the
minimal distortion interconversion pathway,17 which indicates
the portion of the path that a particular structure has covered,
from the square (0%) to the tetrahedron (100%). Let us first
note that the Walsh diagram predicts the tetrahedral geometry
to be the most stable one for a four coordinated d5 ion such as
high-spin MnII.8 It is important to notice that, in the square
planar geometry, there are four d orbitals that cannot, by the
dictate of symmetry rules, mix with the metal s or p orbitals, but
they do present σ or π interactions with the ligands in well-
known ways (Figure 2, left, upper three orbitals). Only the z2

orbital can mix with the metal s orbital in such a way as to

minimize the antibonding interaction in the xy plane (Figure 2,
lowest left orbital). It is thus clear that, along the path, the
degree of hybridization and the mixing in of ligand orbitals
varies in straightforward ways summarized in Table 2.
At the tetrahedral extreme of the pathway, the three t2

orbitals of the d-block belong to the same irreducible
representation as the valence metal p orbitals, and their mixing
results in hybridization of the occupied orbitals in such a way as
to minimize the antibonding interaction with the ligands, as
illustrated in Scheme 5. As a result, the d-block molecular

Figure 1. Hybridization of the z2-type orbital and mixing with different ligand orbitals in the square planar (left), tetrahedral (right) and intermediate
(center, 20% along the path to the tetrahedron) geometries of the [MnF4]

2− anion.

Table 2. Symmetry-Allowed Mixing of the d orbitals with
Metal s and p Orbitals, and with Ligand σ or π Group
Orbitals in an [MX4] Complex along the Spread Pathway for
the Conversion of a Square Planar to a Tetrahedral
Coordination Sphere, According to the Irreducible
Representations of the Three Relevant Symmetry Groups
(Recall Scheme 3)

d orbital D4h D2d Td

z2 A1g: s, σ A1: s, σ, π E: π
xy B2g: π B1: π E: π
xz, yz Eg: π E: px, py, σ, π T2: px, py; σ, π
x2 − y2 B1g: σ B2: pz, σ, π T2: pz, σ, π

Figure 2. Walsh diagram for the d-block molecular orbitals of the [MnF4]
2− anion along the spread pathway. The energies and compositions of the

molecular orbitals obtained through density functional theory (DFT) calculations are drawn as 0.04 probability contours. The symmetry labels given
correspond to the D2d point group. For the sake of clarity, only one of the two equivalent orbitals of the (xz, yz) set is shown at each side of the
diagram.

Scheme 5
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orbitals present a small gap separating the e and t2 subsets, and
the latter should be considered as formally nonbonding.9 That
small gap (5100 cm−1 in the present calculations) is responsible
for the well-known tendency of open shell tetrahedral
complexes to present high spin states, as well as for the low
energy of their d-d electronic transitions in their visible spectra.
Yet another consequence of that mixing is the incorporation of
some anticentrosymmetric character into the otherwise
centrosymmetric d-block orbitals.

■ ORBITAL MIXING AND LOSS OF INVERSION
SYMMETRY

Since inversion symmetry of the molecular orbitals is of the
utmost importance in determining the intensities of the
electronic spectral bands, according to the well-known Laporte
rule,10 it is worth exploring how the symmetry measures3,4 of
the d-block MOs of a four-coordinate complex can provide us
with a quantitative description of the loss of inversion
symmetry associated to the orbital mixing just discussed
(Scheme 5). For that purpose, we have calculated the symmetry
measures of the d-block MOs of the [MnF4]

2− anion along the
spread pathway relative to the Ci symmetry group. Note that, in
this case, Ci is only a subgroup of the molecular symmetry
group at the beginning of the path, for the square planar
structure. All other structures along the path do not have an
inversion center, although in the language of continuous
symmetry measures the degree of inversion symmetry is
considered to diminish continuously as we depart from the
initial D4h geometry.
In Figure 3, we compare the inversion group measures2 S(Ci)

for the MnF4 nuclear framework and those for its five d-block

MOs, as a function of the generalized coordinate for the spread
path used above for Figure 2. There, we see that the inversion
symmetry measure of the nuclear skeleton increases continu-
ously along the square-tetrahedron pathway, as was to be
expected. The five d-block MOs have zero values of S(Ci) at
the square planar geometry or, in other words, they are all fully
g-type orbitals. In contrast with the nuclear framework,
however, they lose inversion symmetry at a higher pace for
small distortions, but halfway to the tetrahedron, their degrees
of asymmetry asymptotically converge to two distinct inversion

measure values for the e and t2 MO sets of the tetrahedron. The
loss of inversion symmetry of those MOs is due to the
combined effect of mixing in u-type metal p orbitals and the
loss of inversion symmetry of the ligand group orbitals that
participate in those MOs. Therefore, the limiting values at the
tetrahedral geometry are determined by the weight of the
centrosymmetric metal d orbitals in those MO sets, and they
explain the much less centrosymmetry content (higher Ci
measure) of the t2 orbitals compared to the e ones (see
Scheme 5). The behavior of the e(xz,yz) pair of orbitals at
intermediate geometries is, at first glance, surprising, showing a
maximum in its loss of g symmetry at about one-third of the
pathway, and decreasing again as the tetrahedron is approached.
The discussion of this issue will be highly facilitated by analysis
of the pseudo-symmetry representations and will be addressed
after introducing such an analysis in the next section.

■ ORBITAL MIXING AND PSEUDO-SYMMETRY
REPRESENTATIONS

The question we wish to address in this section is this: Can we
adopt a unique symmetry-based notation for the molecular
orbitals, avoiding the use of different symmetry labels for the
molecular orbitals corresponding to the three different point
groups appropriate for the tetrahedral, intermediate, and square
planar geometries? To answer that question, we will make use
of the pseudo-symmetry measures of irreducible representa-
tions.4,11

We have recently shown that any molecular orbital ϕi in a
molecule with symmetry F can be expanded as a pseudo-
symmetry-adapted linear combination (PSALC) of orbitals φij

μ

that belong to irreducible representations Γμ of a pseudo-
symmetry group G ≠ F, according to the following
expression:11

∑ ∑ϕ φ=
μ

μ μ
μ

ci

N

j

d

ij ij

IR

(1)

where the sum extends over all the NIR irreducible
representations of the pseudo-symmetry group G, dμ is the
dimension of the μth IR of G, and {cij

μ} a set of coefficients that
calibrate the participation of each representation in ϕi.
Such an approach allows us to easily analyze orbital mixing

due to symmetry lowering in the intermediate four-coordinate
structures along the square planar-tetrahedral pathway, relative
to either of the two ideal symmetries. Because of
orthonormality of the {φij

μ} set, the weight of each {φij
μ} in ϕi

is directly obtained as in eq 2a, where we can drop the j
subindex for nondegenerate representations (eq 2b).

∑ω = | |μ μ
μ

ci
j

d

ij
2

(2a)

ω =μ μc( )i i
2

(2b)

Let us consider only the examples of the x2−y2 and z2-type
MOs of the [NiF4]

2− anion, since we will later focus on an
electronic transition involving those two orbitals. If we adopt
D4h as the pseudo-symmetry group for an arbitrary geometry
along the D2d planarization pathway, eq 1 for each of those
MOs leads to eqs 3 and 4, where a1g, for instance, represents all
the orbital contributions that belong to the A1g representation
of the pseudo-symmetry group D4h.

Figure 3. Inversion measures of the d-block MOs of [MnF4]
2− along

the spread pathway from square planar (0%) to tetrahedral (100%).
The inversion measure for the nuclear framework is represented as a
dashed line, for the sake of comparison.
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ϕ = +c a c bz z z u
A

1g
B

22 2
1g

2
2u

(3)

ϕ = +− − −c b c ax y x y g x y u
B

1
A

22 2 2 2
1g

2 2
2u

(4)

In these equations, we see that the mixing of orbitals of
different D4h representations upon symmetry descent is quite
simple. A look at the symmetry representations of the metal
and ligand orbitals in the D2d group (Table 1) helps us in
obtaining a deeper insight on such expressions. It can be seen,
e.g., that the only orbital of non-A1g pseudo-symmetry that can
mix with a1g(z

2) upon symmetry descent to the D2d group is
the ligand b2u(π//) orbital, since both belong to the A1(D2d)
representation, hence the simple expression of eq 3. Similarly,
the b1g(x

2 − y2) MO is allowed upon distortion to incorporate
only new contributions from the metal pz atomic orbital and
from a ligand π orbital, a2u(π//), as reflected in eq 4.
Of course, the exact values of the mixing coefficients for a

given complex depend on the degree of distortion from the
square planar geometry. We illustrate the evolution of the

composition of the z2 and x2 − y2-based MOs by plotting the
weights ωMO

μ defined in eqs 2 along the spread pathway (see
Figure 4a), where ωMO

μ represents the weight of the functions
belonging to the pseudo-symmetry representation Γμ in the
given MO (for simplicity, here, we use z2 and x2 − y2 to refer to
the z2- and (x2 − y2)-based MOs). We can do that taking either
tetragonal pseudo-symmetry (Figures 4a and 4c) or tetrahedral
pseudo-symmetry (Figures 4b and 4d).
As expected, we observe in Figure 4a that the z2-MO has

strict A1g symmetry at the square planar geometry, as indicated
by the values ωz2

A1g = 1 and ωz2
B2u = 0. A distortion of 11% toward

the tetrahedron is sufficient to incorporate some noticeable B2u

character (ωz2
B2u = 0.012), that can only come from mixing with a

ligand group orbital of π// character (see Table 1). The B2u

contribution increases as the distortion progresses, reaching a
maximum at the tetrahedral geometry (ωz2

B2u = 0.078), but it is
clear that the weight of the A1g contribution remains dominant
all the way to the tetrahedron. Therefore, one can reasonably
continue to use the a1g pseudo-symmetry label for that MO,

Figure 4. Weights of the pseudo-symmetry representations for the d-based molecular orbitals of the [NiF4]
2− anion along the square to tetrahedron

pathway, relative to (a, c) the D4h pseudo-symmetry groups and (b, d) the Td pseudo-symmetry groups.
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even at highly distorted geometries along the spread path.
Something similar happens with the b1g orbital, even if the
mixing in that case is somewhat more important and involves
contributions of A2u symmetry that can only come from the
metal pz atomic orbital and from a ligand orbital of π//
character (Table 1). The actual compositions of those two
MOs at an intermediate geometry are shown in Figure 5, where

we can see that the inclusion of ligand π// contribution
(Scheme 4) to x2 − y2 allows donor orbitals to deviate from the
ligand−metal direction in the nonplanar molecule, thus
optimizing their overlap with the metal x2 − y2 orbital.
Alternatively, one could carry out a similar analysis with

respect to the tetrahedral pseudo-symmetry (see Figures 4b and
4d). A remarkable feature is that the (x2 − y2)-based MO
retains the full T2 symmetry throughout the path. This does not
mean that there are no changes in its composition, but that
those changes (replacement of π-ligand orbitals by σ-ligand
orbitals as one moves to the left in the diagram, toward the
square) do not imply mixing with orbitals of different
representations in the extreme tetrahedral geometry. On the
other hand, the z2-type MO belonging to the E representation
at the tetrahedron, rapidly incorporates A1 character as the
molecule is planarized (i.e., on going from right to left in Figure
3a), because of the s + z2 hybridization forbidden in the Td but
allowed in the D2d and D4h groups. Interestingly, that mixing
reaches a plateau before the middle of the planarization
pathway, remaining constant all the way to the square.
The other d-block MOs behave in a similar way (Figure 4d).

In summary, we can say that it is reasonable to use the
irreducible representations of either the Td or the D4h pseudo-
symmetry groups to label the d-block MOs along the planar to
tetrahedral pathway of a tetracoordinate complex, since their
composition has a predominant contribution from the
corresponding symmetry species. The analysis presented here
allows us to quantify the degree to which such a labeling can be
trusted at any particular point of the path and also facilitates
enormously the task of identifying which orbitals are mixing
into the d-type orbitals upon symmetry descent. It must be
stressed that such an analysis is made in an automatic fashion
by means of the Wave-Sym program11 and provides simple
results that are hampered by neither the complexity of the basis
set used, nor the mixing of different MOs of the same
symmetry.
We can go back now to the discussion of the presence of a

maximum in the inversion symmetry measure of the e(xz,yz)
pair of orbitals at geometries intermediate between the square
and the tetrahedron (Figure 3). The contribution of the Eu
(D4h group) representation to each of those degenerate orbitals
is found to increase from 0 at the square planar geometry to
23% at the midpoint, and then decrease to 20% at the end of

the pathway. Inspection of Table 1 tells us that such behavior
should be ascribed to the mixing in of the eu(π⊥) orbitals,
allowed in the D2d group (E representation) but not in the Td
group (T1 representation), while the remaining Eu contribution
in the tetrahedron is due to the eu(px,py) and eu(σ) pairs that
belong to the same representation as the (xz,yz) set in both the
D2d and Td symmetry groups (E and T2, respectively).

■ PSEUDO-SYMMETRY ANALYSIS OF ELECTRONIC
TRANSITION PROBABILITIES

The presence or absence of inversion symmetry has a strong
influence on the intensity of the electronic absorption bands,
according to the Laporte rule.10 That rule is just a
simplification, albeit a useful one, of the more general symmetry
selection rules that requires the direct product of the irreducible
representations of the ground and excited states to contain the
representation of a component of the dipole moment. By
focusing only on the inversion operation, one can conclude that
the only nonvanishing electric-dipole transition moments are
those that connect an even (g) and an odd (u) term. Hence,
the “d→ d” transitions are forbidden by symmetry in square
planar and octahedral complexes, and such transitions are seen
in visible spectra only as relatively weak bands, thanks to
vibronic coupling that renders the Laporte rule only
approximate. However, along the distortion path from the
square to the tetrahedron, the mixing of g and u orbitals just
discussed (Scheme 5) results in a nonstrict applicability of the
Laporte rule and significantly enhanced intensities of the d→ d
absorption bands.
We can go now a step further and analyze the variation of the

intensities of the d→ d transitions along the spread pathway by
means of the pseudo-symmetry properties of the d-block
orbitals. To that end, we focus on the 1A1g →

1B1g transition
(D4h pseudo-symmetry labels) of the d8 [NiF4]

2− anion, that
corresponds essentially to a z2 → x2 − y2 one-electron
excitation. For that purpose, we performed TD-DFT (see the
Methods section) calculations for that anion at several
geometries along the minimal distortion interconversion
pathway, from which we obtained the calculated intensity for
that transition at each geometry between the square planar and
tetrahedral extremes. The reader must be reminded that at the
tetrahedral extreme of the pathway the singlet state is no longer
the ground state, although we carry out our analysis for the full
path in order to provide a broader picture.
The intensity of the absorption band associated to an

electronic transition between the ground and excited states Ψ0
and Ψn is proportional to the oscillator strength f 0n (eq 5):12

μ=
Δ

Ψ Ψ
→

f
h

2 E
3n

n
n0

0
2 0

2

(5)

where μΨ Ψ
→

n0 is the transition dipole moment integral,

ΔE0n is the energy difference between the two states, and μ
→
is

the dipole moment operator. For one-electron transitions that
involve only an occupied orbital i and an empty orbital a, the
transition dipole moment integrals can be approximated in
terms of the molecular orbitals:

μ ϕ μ ϕΨ Ψ ≈
→ →

n i0 a (6)

For the particular one-electron excitation from z2 to x2 − y2, the
introduction of the D4h pseudo-symmetry expression of the

Figure 5. Composition of the z2- and (x2 − y2)-type MOs of the
[NiF4]

2− anion in an intermediate geometry along the spread pathway,
showing the mixing with a ligand b2u(π//) orbital and the hybridization
with the metal b2u(pz) orbital, respectively (see Scheme 5).
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wave functions for the ground and excited states (eqs 3 and 4)
yields

ϕ μ ϕ μ μ

μ μ

⟨ | | ⟩ = ⟨ | | ⟩ + ⟨ | | ⟩

+ ⟨ | | ⟩ + ⟨ | | ⟩

− −

− −

c c a b a c c b b

c c a a a c c a b

i z x y x g z x y z z

x y z z x y z z

a
B A

1g 1 1g
B B

1g 2u

A A
1g 2u 1g

A B
2u 2u

2 2
1g

2
1g

2 2
1g

2
2u

2 2
2u

2
1g

2 2
2u

2
2u

(7)

Given the anticentrosymmetric character of the components
of the dipole moment, belonging to the A2u(z-component) and
Eu (x- and y-components) representations of the D4h group, the
first and last terms of eq 7 are rigorously zero, and so are the

contributions from the x- and y-components of μ
→
. Con-

sequently, we are left with the following expression for the
probability integral:

ϕ μ ϕ μ μ⟨ | | ⟩ = ⟨ | | ⟩ + ⟨ | | ⟩− −c c b b c c a ai z x y z g z x y z za
B B

1 2u
A A

2u 1g2 2
1g

2
2u

2 2
2u

2
1g

(8)

To get a rough idea of how that integral evolves along the
spread pathway, we assume as a crude approximation that the
two integrals at the right-hand side of eq 8 have similar values,

μ μ⟨ | | ⟩ ≈ ⟨ | | ⟩ =b b a a kg z u u z g1 2 2 1

then deduce a further simplified expression for the transition
dipole integral as a function of a sum of products of pseudo-
symmetry coefficients,

ϕ μ ϕ⟨ | | ⟩ ≈ +− −k c c c c( )i z x y z x y za
B B A A

2 2
1g

2
2u

2 2
2u

2
1g

(9)

and obtain the following approximate expression for the
oscillator strength (eq 5):

κ
Δ

≈ +− −

f

E
c c c c( )n

n
x y z x y z

0

0

B B A A 2
2 2
1g

2
2u

2 2
2u

2
1g

(10)

where κ is a constant.
Therefore, the symmetry-allowedness of the z2→ x2 − y2

transition in a square planar complex distorted along the spread
pathway depends crucially on the mixing coefficients cz2

B2u and
cx2−y2
A2u . Again, a look at Tables 1 and 2 allows us to conclude that
those coefficients reflect the mixing of a ligand π orbital of B2u
symmetry with z2, and of x2 − y2 with the metal pz and a ligand
π orbital, both of A2u symmetry.
In the specific case of [NiF4]

2−, that excitation is strictly
symmetry-forbidden in the square planar geometry but partially
symmetry-allowed in the tetrahedral conformation, and its
calculated oscillator strength behaves as expected, with a
monotonous increase along the spread pathway (Figure 6).
Given the dependence of the mixing coefficients on the
generalized coordinate discussed above, we also expect the
symmetry product (right-hand side of eq 10) to increase along
the path, as actually seen in Figure 6, indicating an almost-
parallel behavior of the oscillator strength and the symmetry
product, which is reflected in a fair nonlinear correlation
between the two parameters. The differences between the two
curves should without doubt be attributed to the crude
approximation made in deducing eqs 9 and 10 concerning the
two integrals that appear in eq 8. Despite such a crude
approximation, the product of coefficients nicely predicts the
qualitative behavior of the intensity of the z2→ x2 − y2 band
along the pathway, indicating that the changes in those
coefficients, i.e., the mixing of orbitals brought about by
symmetry descent, are perhaps more important than the
variation of the transition integrals.

The symmetry allowedness of the z2→ x2 − y2 transition,
neglecting vibronic coupling, increases gradually from strictly
forbidden at the square planar geometry to an asymptotic
maximum at geometries with ∼60% tetrahedral character.
Therefore, these results rationalize, in an elegant way, the well-
known difference in the intensity of the d→ d bands in visible
spectra of square planar and tetrahedral complexes.13 It is
appropriate to recall here that it has been previously shown
how the position of the lowest energy absorption band in some
four-coordinate CuII complexes can be correlated to the degree
of tetrahedricity of the Cu coordination sphere.14 Other
spectroscopic probes along that pathway have also been
analyzed by Solomon.15

■ EFFECTS OF CHEMICAL SUBSTITUTION ON
ORBITAL PSEUDO-SYMMETRY

In the previous sections, we have analyzed the symmetry
changes that accompany a geometric distortion for the same
metal ion and coordination sphere, as well as their effect on the
composition of the d-block molecular orbitals and the
symmetry allowedness of electronic transitions. Now we take
a different point of view, starting from a square planar
coordination sphere and inducing symmetry changes in the
electronic structure only by means of a ligand substitution,
without altering the basic square planar geometry of the
coordination sphere. We take, as our workhorse, a group of
[NiII(PH3)3X]

n+ complexes, with X = PH3, F
−, Cl−, Br−, CN−,

NH3, and CH3
−.

The symmetry lowering from D4h to C2v upon substitution of
one phosphine in [Ni(PH3)4]

2+ by a halide results in mixing of
the empty (x2 − y2)-type MO with occupied orbitals, with a
resulting significant localization of three orbitals of A1
symmetry (see Figure 7): While the empty 3a1 becomes
essentially x2 − y2 with σ* Ni−X character, the occupied
orbitals 1a1 and 2a1 become essentially Ni−P and Ni−X σ
bonding, respectively. How that mixing occurs can be deduced
effortlessly by the pseudo-symmetry representation decom-
position of that MO (see Table 3), which is visually
summarized in Scheme 6, where the mixing coefficients for a
given complex are related to the weights given in Table 3
through eq 2b.

Figure 6. Calculated ΔE−weighted oscillator strength for the z2→ x2

− y2 transition in [NiF4]
2− along the spread pathway from the square

to the tetrahedron (circles), compared to the variation of the pseudo-
symmetry coefficients (fitted to eq 10 with κ = 0.064) along the same
path (squares).
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Note that the optimized geometries indicate a decreasing X−
Ni−Pcis bond angle as the Eu contribution to 3a1(x

2 − y2)
increases (i.e., from PH3 to Br to Cl to F; see Table 4), which
could be interpreted as an increasing tendency to employ
mostly the x2 − y2 orbital for bonding to X and a preferential
sp2 bonding with the phosphines. This interpretation can be
verified in Table 4, where we see that the 3a1(x

2 − y2) empty
MO has an increasing metal d contribution along the series.
The closing of the X−Ni−Pcis bond angle as the phosphine
group is substituted by bromide, chloride, and fluoride could, in
principle, be described as a tendency toward a partial
dissociation to a trigonal planar [Ni(PH3)3]

2+ molecule linked
via ionic interaction with a halide (see Scheme 7). This
qualitative description of the observed distortion finds a
quantitative expression if we plot the percentage of the
dissociation path defined by shape measures16 of the Ni(PH3)3
fragment as a function of the electronegativity of the donor
atom (see Figure 8). Moreover, a nice correlation has been
found between the electronegativity of the donor atom X and

its calculated atomic charge, which is consistent with the
increasing ionic character of the Ni−X bond along the series.
We now wish to examine the effect of the symmetry lowering

in the series of [NiII(PH3)3X]
n+ complexes, brought about by

chemical substitution, on the intensity of the absorption band
associated to the z2 → x2 − y2 electronic transition. It must be
mentioned that the two bonding isomers [Ni(PH3)3NCS]

+ and
[Ni(PH3)3SCN]

+ have been disregarded for this study, since
that electronic transition cannot be reasonably ascribed to
single MOs, because of extensive mixing of the z2 orbital with
the π-system of the thiocyanato ligand that introduces
significant charge-transfer character to that transition. The
symmetry descent to the C2v point group produced by chemical
substitution also allows mixing of the x2 − y2 and z2 orbitals
(both belonging to the A1 representation in C2v) with each
other, as well as with orbitals of the Eu representation of the D4h
pseudo-symmetry group (see Table 1 for compositions of the
orbitals of those symmetries). Since the incorporation of
anticentrosymmetric Eu contributions is expected to make the
z2 → x2 − y2 transition partially symmetry-allowed, we have
analyzed the weights of the Eu contributions to those two MOs.
We can deduce an expression similar to eq 8 that relates the
oscillator strength to the weights of the different pseudo-
symmetry representations, including four terms in this case:

ϕ μ ϕ μ μ

μ μ

⟨ | | ⟩ = ⟨ | | ′⟩ + ⟨ | | ′⟩

+ ⟨ | | ′ ⟩ + ⟨ | | ′ ⟩

− −

− −

c c a e c c b e

c c e a c c e b

i x y z x y x y z x y x y

z x y x y z x y x y
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A E
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B E

1g , u
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2 2
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2
1g

2 2
u

2
u

2 2
1g

2
u

2 2
1g

(11)

Of all the products of coefficients that appear in eq 11, the
first and last ones are sufficiently large to make the
corresponding terms non-negligible. As a consequence, the
oscillator strength cannot be correlated to a single parameter,
except for the series of halo-substituted complexes, for which
the first term predominates (see the Supporting Information).
In that case, a nice correlation is seen between the degree of
mixing of orbitals of Eu(D4h) character into the (x2 − y2)-type
MO and the calculated oscillator strength. The different nature
of the other ligands considered results in nonsystematic
variations of the values of the pseudo-symmetry coefficients
and probably also of the corresponding integrals. For the halo-
substituted complexes, inspection of the weights of the different
pseudo-symmetry representations in the z2- and (x2 − y2)-
based MOs shows that the former incorporates very little Eu
character, whereas 3a1(x

2 − y2) strongly mixes with the halide

Figure 7. Localization of the empty 3a1(x
2 − y2) MO and other

occupied orbitals of the same symmetry in [NiF(PH3)3]
+, as a result of

symmetry lowering from D4h to C2v.

Table 3. Orbital Contributions to the (x2 − y2)-Type MO
(3a1) of the [NiIIX(PH3)3]

n+ Complexes (X = PH3, Br, Cl,
and F), in Terms of the Irreducible Representations of the
Pseudo-symmetry D4h Point Group

Orbital Contributions (%)

X ω3a1
B1g ω3a1

Eu ω3a1
A1g other

PH3 97.3 0.7 0.0 2.0
Br 94.5 3.5 1.0 1.0
Cl 92.8 5.2 1.8 0.2
F 80.8 13.0 5.9 0.3

Scheme 6
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σ-lone pair (Figure 7), thus introducing significant Eu

contributions, which are responsible for the dominant character
of ωx2 − y2

Eu in the value of the oscillator strength. Therefore,
within this series of complexes, the oscillator strength is well-
correlated with the value of that parameter, as seen in Figure 9a.
In addition, in the series of halo-substituted complexes, it is

seen that the Eu contribution to the (x
2 − y2)-based MO is well-

correlated to the electronegativity of the halide. As a
consequence, the oscillator strength is also correlated to the
electronegativity of the halide. A plot of the band intensity as a
function of the relative electronegativity of the donor atom
substituted for a phosphine shows a clear dependence of the
oscillator strength on the relative electronegativity of the donor
atom when similar ligands are considered (PH3, CH3

−, and
NH3, or F

−, Cl−, and Br−; see Figure 9b). Remarkably, the π-
acceptor cyanide ligand seems to follow the same electro-
negativity dependence than the π-donor halo ligands, thus
confirming that the main effect is the incorporation of Eu

character into the (x2 − y2)-type MO via σ-antibonding
interaction with the heteroligand X.

■ CONCLUSIONS

As the first examples of the pseudo-symmetry decomposition of
molecular orbitals are presented in this paper, we have carried
out a detailed group theoretical analysis of the orbital
correlations along the square planar to tetrahedral pathway
for four-coordinate complexes, to verify that the results follow
the qualitative expectations. However, one can from now on
employ the pseudo-symmetry decomposition in an automatic
way without the need of an a priori group theoretical analysis.

Table 4. Calculated Ni−X Bond Distances, Pcis−Ni−Pcis Bond Angles, and Orbital and Atomic Contributions to the (x2 − y2)-
Type MO of the [NiIIX(PH3)3]

n+ Complexes (X = PH3, Br, Cl, and F)

Contributions (%)

X bond distance, Ni−X (Å) bond angle, α (deg) Ni (d) Ni (s) Ni (p) X Ptrans Pcis

PH3 2.263 180.0 43.0 0.0 0.0 10.7 10.7 10.3 10.0
Br 2.323 168.0 44.0 0.1 0.1 15.3 9.0 10.2 10.0
Cl 2.174 166.7 45.0 0.2 0.1 13.0 9.0 9.7 9.4
F 1.792 160.4 49.4 0.2 0.5 8.9 8.3 10.7 10.7

Scheme 7

Figure 8. Position of the NiX(PH3)3 fragment of the [Ni
IIX(PH3)3]

n+

complexes (X = PH3, Br
−, Cl−, and F−) along the dissociation path of

Scheme 7 (shown as a percentage), as a function of the Pauling
electronegativity of X.

Figure 9. Calculated oscillator strength weighted by the energy gap as a function of (a) the weight of the Eu contribution to the (x2 − y2)-type
molecular orbital in [NiII(PH3)3X]

n+ (X = PH3, Br
−, Cl−, and F−, denoted by circles (○); other ligands are represented by triangles (△)), and (b) of

the difference in electronegativity of the donor atoms in the series of complexes [NiII(PH3)3X]
n+ (X = PH3, Br

−, Cl−, and F−, denoted by circles) and
[NiII(PH3)3(YH3)]

n+ (Y = P, C, and N, denoted by squares).
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In the particular case of the four-coordinate transition-metal
complexes, we have shown that the d-block MOs for
geometries intermediate between square planar and tetrahedral
can, to a very good approximation, be referred using the
pseudo-symmetry labels of either of the two ideal geometries at
the extremes of that pathway. If need be, one can also obtain a
quantitative description of the mixing of orbitals of different
pseudo-symmetry species. For the case of the z2 → x2 − y2

electronic transition in NiII complexes, we have shown that the
intensity of the corresponding absorption band can be roughly
correlated to the weights of anticentrosymmetric metal or
ligand orbitals mixed into the z2- and (x2 − y2)-based MOs. It
has also been shown how chemical substitution in a square
planar complex introduces a loss of symmetry in the d-block
MOs.

■ METHODS
Structures along the minimal distortion pathway between the square
and the tetrahedron,17 which is usually referred to as the spread
pathway, have been obtained with the SHAPE program.18 The
alternative twist pathway is adequate only when bidentate ligands are
involved,19 and that has not been considered in the present work.
All calculations have been done with the B3LYP functional20 and

the Def2-TZVP basis set.21 Structures along the spread pathway of
[MnF4]

2− and [NiF4]
2− ions have been constructed fixing the Mn−F

and Ni−F distances optimized for the Td geometry. Electronic
transitions for the [NiF4]

2− and [Ni(PH3)3X]
n+ compounds have been

obtained within the TD-DFT methodology at the B3LYP/Def2-TZVP
level.
Electronic wave functions have been obtained with the Q-Chem

package,22 while the symmetry decomposition analysis of the
molecular orbitals was performed with a development version of the
Wave-Sym program11 written by the authors.
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